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a b s t r a c t 

Multiple spatial scale is an important characteristic of two phase flow phenomena. The micro-scale and 

macro-scale flow structures are obviously different in flow state and have different effects on the mass, 

momentum and energy transfer between two phases. Different modeling approaches have been devel- 

oped for each scale physical phenomenon in traditional numerical simulations. However, it is difficult to 

simulate two phase flow systems with multi-scale flow structures simultaneously. In order to address 

this problem, a multi-scale two phase method is developed based on the combination of Volume of Fluid 

(VOF) interface capture method and Euler–Lagrange particle tracking method. The fundamental assump- 

tion of the present method is that there is a clear scale separation between VOF interfaces and bubbles. 

Therefore, VOF method with artificial compressive algorithm is used to simulate the dynamic evolution 

of macro-scale air-water interface. While Euler–Lagrange method is used to track the micro-scale bubbles 

that cannot be captured in grids. Collision, coalescence and breakup of Lagrange bubbles and two-way 

coupling are fully considered to construct a comprehensive micro-bubble solving procedure. Transforma- 

tion criteria and the corresponding algorithms between micro-scale and macro-scale flow structures are 

designed and discussed in detail. In addition, a new curvature-based algorithm for the transformation 

from VOF interface to Lagrange bubbles is proposed. Simulations of typical two phase flow problems in- 

volving multi-scale flow transformation are carried out to test the performance of the multi-scale solver. 

Results indicate that the multi-scale two phase method performs significantly better than the pure VOF 

method in capturing micro-scale phenomena. Besides, the curvature-based transformation algorithm pro- 

posed in this paper is proved to be more precise and efficient than the previous identify-based one. From 

the perspective of simulation accuracy and efficiency, the multi-scale two phase method is more promis- 

ing for the simulation of actual complex two-phase flows. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Many two-phase flow problems present obvious multi-scale

haracteristics due to the existence of bubbles, droplets and large

nterface. Typical multi-scale two phase flow problems include jet

tomization ( Dumouchel et al., 2015 ), bubble plume ( Liu et al.,

004 ; Yang et al., 2011 ), cavitation ( Kuiper, 2010 ) and wave break-

ng ( Deike et al., 2016 ). Fig. 1 illustrates the flow characteristics of

ulti-scale two-phase flow by taking a simple bubble plume prob-

em as an example. Gas is injected into the liquid field from the

ottom inlet, micro-scale bubbles, macro-scale bubbles and gas-

iquid free surface are present in the flow field at the same time.

ontinuous interface deformation occurs in the process of macro-

cale bubbles moving, at the same time smaller bubbles break off
∗ Corresponding author. 
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rom large bubbles under the influence of flow interaction. Micro-

cale bubbles keep constant shape and present a chaotic motion.

wo phase flow at different scales presents different characteris-

ics, which have an important effect on the mass, momentum and

nergy transfer. 

Numerical simulation has been widely used in predicting and

nvestigating two phase flow problems nowadays. Different mod-

ling methods are developed for two-phase flow problems at dif-

erent scales. On the one hand, several mature interface capture

ethods have been applied to the macro-scale two phase flow

roblems successfully. For example, ocean waves simulated by Vol-

me of Fluid (VOF) method ( Lubin, et al., 2015 ) and Level-set

ethod ( Bihs et al., 2016 ), complex droplet motion simulated by

ront-Tracking Method (FTM) ( Armandoost et al., 2018 ), and im-

act dynamics of compound drop simulated by Diffuse -Interface

ethod ( Liu et al., 2018 ). On the other hand, Two-Fluid Method

TFM) and Euler–Lagrange method are two classical numerical

https://doi.org/10.1016/j.ijmultiphaseflow.2020.103460
http://www.ScienceDirect.com
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Fig. 1. Representation of the multi-scale aspect of bubble plume. 
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methods for two phase flow problems with a continuous phase

and a discrete phase consisting of large amount of micro-scale par-

ticles. The TFM has been widely used in the prediction of dense

bubbly flow ( Ma et al., 2015a ). And the Euler–Lagrange method

provides a more precise solution for bubble dynamics by individ-

ually tracking ( Ma et al., 2015b ). These numerical methods per-

form well in reproducing typical physical problems and have been

widely validated. However, two phase flow problems with multi-

ple scales have become a challenge to the numerical simulation.

The grid-based interface capture method is difficult to capture a

large number of micro-scale structures due to the limitation of

computational cost. While the approximation methods cannot sim-

ulate the dynamic evolution of larger air-water interface. In recent

years, several hybrid numerical simulation methods have been pro-

posed to solve the multi-scale flow. By assuming that there is a

clear scale separation between large interfaces and small bubbles,

droplets and particles, the single-scale numerical methods men-

tioned above were combined to solve flow field at different scales

in a system. At the same time, transformation algorithms were de-

signed to achieve smooth multi-scale coupling. 

The idea of concurrent coupling of different simulation meth-

ods for studying the multiple spatiotemporal behavior has been

adopted in various physical problems. In terms of microfluid

and nanofluid, multi-scale ideas were used to develop hybrid

atomistic-continuum methods for dense fluids ( Mohamed and

Mohamad, 2010 ). Domain-decomposition-based algorithms were

used to solve th multiscale flow. Besides, many general single-

phase problems also contain phenomena in different spatial

scales, such as the thermal management in the data center
 Alkharabsheh et al., 2015 ) and the mass transfer in fuel cells

 Grew and Chiu, 2012 ). Tong et al. (2019) summarized the com-

ined application of different scale methods on these problems in

etail. In addition, the multi-scale simulation idea has also been

sed in granular flow problems ( Chen et al., 2016 , 2017 , 2018 ).

y the combination of discrete method and continuum method in

ifferent region, the computational efficiency was significantly im-

roved. In conclusion, the idea of multi-scale numerical simulation

as been applied to several kinds of fluid dynamic problems due

o its advantages in computational accuracy and efficiency. In this

aper, the authors mainly focus on the multi-scale bubbly flows, in

hich the evolution of air-water interface is the macro-scale phe-

omenon and discrete bubbles are the micro-scale phenomenon.

ext, the development of multiscale numerical simulation meth-

ds for air-water two phase system will be reviewed. 

There are great differences in the modeling ideas and simula-

ion effects between Euler Two Fluid Method and Euler–Lagrange

ethod, directly leading to the differences in the development of

ulti-scale two phase flow solvers based on them. The motion

f dense discrete phase is assumed to be continuous in the TFM,

herefore the Navier–Stokes equations are also used as the gov-

rning equations of discrete phase. Ma et al. (2011a) combined

he TFM and interface capture method based on Level-set and

arried out a multi-scale simulation of the hydraulic jump phe-

omenon. Wave-induced bubble sources in the recirculation region

nd turbulent shear region were captured by the TFM, while free

urface was captured by Level-set method. A comprehensive sub-

rid air entrainment model designed for the multi-scale simula-

ion was adopted to predict the bubble entrainment rate ( Ma et al.,

011b ). Although the solution framework is one-way coupled, the

imulation effect has made a unique breakthrough. VOF method

s another commonly used interface capture method. Yan and

he (2010) developed a multi-scale two phase flow solver based

n the combination of VOF and TFM. Flow field in the algorithm

as divided into three phases according to the length scale. Special

reatment of ‘‘volume fraction redistribution” was implemented.

ubbly flow followed by a rising large gas bubble in a vertical pipe

as simulated in their study. Wardle and Weller (2013) improved

he TFM-VOF method by increasing the accuracy of interface cap-

uring. Liquid-liquid extraction simulations were performed to ver-

fy the capacity of the method in predicting discrete phase dis-

ribution. Multiple Size Group (MUSIG)-model was added into a

ulti-scale solver by Hänsch et al. (2012) to describe the mass

ransfers between different bubble size groups due to coalescence

nd breakup as well as gas-liquid transfers. Closure models be-

ween the multi-scale flows were designed using basic ideas of the

IAD-model ( Höhne et al., 2011 ). Volume fraction fields in a bub-

le column domain is simulated to verify the solver. Similar AIAD-

odel was used by Schmidtke and Lucas (2008) to simulate bub-

le entrainment by an impinging jet. The TFM method was used to

eproduce the physical process of bubble generation near the jet,

hich cannot be captured by macro-scale simulation. A coupled

USIG-VOF approach is developed by Xiang et al. (2014) to han-

le the formation of large-scale free surface, bubble entrainment

nd bubble dispersion in hydraulic oscillating jumps. The predicted

oid fraction bubble frequency distributions were in good agree-

ent with experimental measurement. Rezende et al. (2015) devel-

ped a two-fluid model with a tensor closure model approach to

mprove the accuracy of the traditional single-scale interface cap-

ure method. The air-water mixing phenomenon caused by inter-

ace breakup is simulated much better. 

Using the TFM method to describe the bubble and droplet

roups in multi-scale flows can give the general phase fraction

nd momentum distribution, but the motion details of discrete

hase cannot be obtained. In contrast, micro-scale flow structures

re tracked individually in Euler–Lagrange method, which can be
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sed to analyze the behavior and physical mechanism of micro-

cale bubbles and droplets. Herrmann (2010) developed a parallel

evel-set/Euler–Lagrange multi-scale coupling procedure. The sim-

lated flow scale is related to the grid scale. The level-set method

s used to capture the flow structures with sufficient number of

ccupied grids for fully resolving. In the flow regions where the

hase interface geometry can no longer be resolved adequately, the

icro-scale flow structures were modeled as Lagrange particles. By

sing this method, the simulation accuracy of jet atomization pro-

ess was improved obviously. Patkar et al. (2013) presented a hy-

rid Lagrange–Euler framework for multi-scale bubbly flow simu-

ation. The larger well-resolved bubbles were modeled by Level-

et method and the smaller under-resolved bubbles were modeled

y Lagrange tracking. Novel interconverting scheme and seeding

echanism models were proposed to simulate complex interac-

ion. Elaborate direct numerical simulations were performed for

ising bubble breakup, bubble plume, cavitation and faucet pour-

ng water problems. Hsiao et al. (2013) carried out both experi-

ental measurement and Euler–Lagrange one-way coupled multi-

cale simulation for horizontal plunging jet flow. Bubble entrain-

ent was simulated by an improved sub-grid bubble entrainment

odel. The evolution of free-surface and micro-bubbles were in

ood agreement with the experimental results. Cavitation flow in-

olves multi-scale flow states, including micro-scale gas core, sheet

avity, dispersing bubble cloud. Coupled Euler–Lagrange/Level-set

ethod provides a solving approach for the whole process simula-

ion of cavitation flows ( Ma et al., 2017 ; Hsiao et al., 2017 ). By us-

ng the multi-scale method, the capture accuracy of the flow struc-

ures is obviously improved, such as cavitation collapse on hydro-

oil surface and tip vortex cavitation of propeller. At the same time,

he pressure oscillation is also well predicted. 

The combination of VOF method and Euler–Lagrange method is

lso an effective idea of constructing multi-scale algorithm. Com-

ared with the Level-set method, the VOF method has signifi-

antly better conservation. Jain et al. (2014) developed a semi-

oupled VOF/Euler–Lagrange multi-scale two phase flow solving

ode for bubble plume problems. The free surface was captured

y VOF method while bubbles in water were modeled by Lagrange

racking. Transformation from Lagrange bubbles to VOF interface

as implemented when bubbles approach to free surface. How-

ver, micro-bubbles generated by interface breakup or deformation

f large bubble due to coalescence were not considered. Similar

umerical method was adopted by Li et al. (2017) to study gas-

teel-slag three-phase flow in ladle metallurgy. The perturbations

aused by the rise of Lagrange bubbles to the free surface were

nalyzed in detail. To further simulate complex physical phenom-

na, several scholars developed fully-coupled VOF/Euler–Lagrange

ulti-scale two phase flow solving code. Tomar et al. (2010) per-

ormed multi-scale simulations of primary atomization using a

OF algorithm coupled with a two-way coupling Lagrange particle

racking model. Conversion between VOF interface and Lagrange

articles was achieved by the manipulation of local void fraction

nd particle volume. Transformation from VOF framework to La-

range framework was identified by tagging simply connected cells

ith void fraction larger than zero. At the same time the trans-

orm criterion from Lagrange framework to VOF framework was

ased on the proximity with interface. The algorithm has been

uccessfully used in the prediction of jet atomization. More re-

ently, Ling et al. (2015) improved the VOF-EL multiscale algo-

ithm by determining the criteria for conversion. In their study,

OF bubbles or droplets which contain less than 4 3 grids and

re more than one diameter away from interface should be trans-

ormed to spherical Lagrange points. In turn, Lagrange particles

ith a distance less than one diameter from the interface will be

ransformed back to VOF solution. Karimi et al. (2018) carried out

olyurethane foam simulation using VOF-EL multi-scale method.
he numerical results were in good agreement with experimen-

al results. Zuzio et al. (2018) improved the accuracy of multi-scale

lgorithm. An adaptive mesh refinement technique is used to dy-

amically optimize the structured Cartesian mesh and improve the

nterface capture accuracy. It was proved that the combination of

agrange tracking could improve the computational efficiency on

he basis of micro-scale structure simulation. 

Summing up the above numerical simulation methods, the

uler–Lagrange method can track each micro-scale flow structure

n detail, and the VOF method has good conservation. Therefore,

hese two methods are used as the basic methods for construct-

ng the multi-scale two-phase flow solver in this study. The previ-

us VOF/Euler–Lagrange multi-scale studies are not comprehensive

nough about the consideration of physical phenomena. For exam-

le, the semi-coupling ( Jain et al., 2014 ; Li et al., 2017 ) and partially

gnoring kinematic behaviors of bubbles and droplets ( Tomar et al.,

010 ; Ling et al., 2015 ; Zuzio et al., 2018 ). The fundamental goal of

he present work is to develop a comprehensive multi-scale two

hase solver based on VOF and Euler–Lagrange method for bub-

ly flow problems. Collision, coalescence and breakup of Lagrange

ubbles are considered and high robustness two-way coupling al-

orithm is adopted in the Euler–Lagrange solving framework. Spe-

ific multi-scale transformation algorithms are designed to guar-

ntee the smooth transformation between VOF interface and La-

range bubbles. On the basis, this paper focuses on the discussion

f simulation effects, efficiency, critical criteria and algorithm per-

ormance of the developed multi-scale solver. 

The paper is organized as follows. First, the single-scale numer-

cal methods used to construct multi-scale method in this work are

ntroduced in Section 2 and Section 3 , including the VOF interface

apture algorithm and Euler–Lagrange algorithm for small bubble

racking. Algorithms of Lagrange bubble collision, coalescence and

reakup are also introduced. Section 4 describes the multi-scale

ransformation algorithm and the overall computational procedure.

ext, some academic two phase problems are simulated to show

he capability of the present method in the description of multi-

cale phenomena. The effects of critical criteria and transforma-

ion algorithms are discussed in detail. Finally, conclusions are pro-

ided. 

. Mathematical modeling for Euler framework 

In the present solver, large air-water interfaces and small bub-

les are modeled separately according to different scales. Macro-

cale flow is solved in the Euler framework based on grids. De-

ailed mathematical models for Euler framework including govern-

ng equations and interface capture method are introduced as fol-

ows. 

.1. Governing equations 

The two phase flow considered in the present study is assumed

o be incompressible and immiscible. The adopted governing equa-

ions are Navier-Stokes equations consist of continuity equation

nd momentum equation as follows: 

∂ αL 

∂t 
+ ∇ · ( αL U ) = 0 (1) 

∂ αL ρU 

∂t 
+ ∇ · ( ρUU ) = −∇p + ρg + ∇ · S + f S + f B (2)

here U is fluid velocity vector, ρ is the fluid density, p is pres-

ure, g is gravity, S = 2 μD with D = 1 / 2 ( ∇ U + ∇ U 

T ) is the vis-

ous stress. f B is the Euler–Lagrange coupled source term, which

eflects the effect of micro-bubbles on the fluid. f is surface
S 
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tension force, which is defined as: 

f S = σ k ∇ αV (3)

where σ is surface tension coefficient, which is set to be 0.072 N/m

in the present study. k is interface curvature. 

It is worth noting that the influence of bubbles at different

scales on flow momentum is different. Therefore, the calculation

of volume fraction in the grids is also different. There are two

kinds of volume fraction in the solving procedure. αL in Eq. (1) and

Eq. (2) represents the volume fraction of a grid removing the vol-

ume of Lagrange bubbles. While αV in Eq. (3) represents the vol-

ume fraction of a grid calculated by the VOF transport equation. 

2.2. Interface capture method 

The complex evolution of interface is an important feature of

macro-scale two phase flow problems. In order to capture the in-

terface accurately, the Volume of Fluid (VOF) method with artificial

compressive term is applied to locate and track the air-water inter-

face ( Hirt and Nichols, 1981 ). The transport equation of the volume

fraction of water can be written as: 

∂ αV 

∂t 
+ ∇ · ( αV U ) + ∇ · ( αV ( 1 − αV ) U c ) = 0 (4)

where the third term on the left side of Eq. (4) is the artificial com-

pression term and it is non-zero only at the interface. The effect

of artificial compressive term is to counteract the phase interface

fuzziness caused by the numerical dissipation to obtain a sharper

interface. U c is the compressive speed, which should be used to

compress in the normal direction of the interface rather than tan-

gential, otherwise false diffusion will appear. Therefore the com-

pressive speed is defined as: 

 c = c | U | ∇α

| ∇α| (5)

where c represents compressive factor. The compression effect in-

creases with the increase of c . There is no compressive effect when

c equals to 0 . 

3. Mathematical modeling for Lagrange framework 

In the present solver, micro-scale bubbles are tracked individu-

ally in Lagrange framework based on Newton’s second law. Com-

prehensive bubble behaviors including collision, coalescence and

breakup are modeled in the solving procedure. Detailed mathemat-

ical are introduced as follows. 

3.1. Micro-bubble advection tracking 

Every Lagrange micro-bubble is assumed to be spherical with

constant diameter. The advection of bubbles is rigid translation

controlled by various hydrodynamic forces and collision force. The

governing equation can be written as follows: 

m 

dv 
dt 

= f D + f L + f P + f G + f C 

= 

3 m C D 
4 d 

| u − v | ( u − v ) + 

m ρl 

ρb 

C L ( u − v ) × ( ∇ × u ) 

+ 

m ρl 

ρb 

Du 

Dt 
+ mg 

(
1 − ρl 

ρb 

)
+ f C (6)

where v is the velocity of micro-bubble, m is mass, d is bubble di-

ameter, ρ l and ρb represent the liquid density and bubble density,

respectively. Source terms of Eq. (6) represent drag force, shear lift

force, fluid acceleration force, gravity-buoyancy and collision force

in order. 

Two-way coupling between Lagrange bubbles and Euler phase

solving is realized by a Gaussian distribution scheme ( Zhang et al.,
020 ). The improved algorithm has been proved to be effective in

mproving the robustness of the code. 

Tomiyama’s drag model ( Tomiyama et al., 2002a ) and lift model

 Tomiyama et al., 2002b ) are adopted for the calculation of Drag

orce coefficient C D and lift force coefficient C L as follows: 

 D = max 

(
min 

(
16 

Re 

(
1 + 0 . 15 R e 0 . 687 

)
, 

48 

Re 

)
, 

8 

3 

Eo 

Eo + 4 

)
(7)

 L = 

{
min [ 0 . 288 tan h ( 0 . 121 Re ) , f ( E o d ) ) ] E o d < 4 

f ( E o d ) 4 ≤ E o d ≤ 10 . 7 

f ( E o d ) = 0 . 00105 Eo 3 
d 

− 0 . 0159 E o 2 
d 

− 0 . 0204 E o d + 0 . 474 

(8)

here Re = d | u − v | /ν is the bubble Reynolds number, Eotvos

umber Eo is defined as Eo = g | ρl − ρb | /σ . 

.2. Micro-bubble collision 

The collision between two Lagrange micro-bubbles is handled

o be an elastic process. Although the bubble deformation is not

ctually solved, a nonlinear model ( Heitkam et al., 2017 ) is used to

escribe the relationship between the collision force and the de-

ormation of bubbles. The collision force consists of an elastic force

nd a viscous force which are defined as: 

 elastic = 18 . 5 σ

(
�

R eq 

)2 

+ 2 . 0�σ (9)

 v iscous = u C bc 

12 μl 

2 π
0 . 34 

(
�

R eq 
+ 0 . 0 0 02 

)−0 . 5 

×
( 

4 . 0 

√ 

R 3 eq 

h 0 
+ 3 . 0 R a 

R eq 

h 0 

) 

(10)

here R eq is the effective radius, � is the deformation length of

ubble, h 0 is the gap width when bubble approaches another bub-

le or a wall surface. The parameter C bc is a constant collision co-

fficient, which is equal to 1 for bubble-wall collision and 0.25 for

ubble-bubble collision. 

.3. Micro-bubble breakup 

Previous Euler–Lagrange multi-scale numerical methods usually

gnored the breakup of Lagrange bubbles. In fact, under the effect

f turbulent fluctuation and viscous shear stress, Lagrange bubbles

an further breakup and form a special size distribution in the flow

eld. The complex physical breakup mechanism can be described

y the relationship with turbulent kinetic energy and bubble sur-

ace energy, which can be further derived to be a critical weber

umber. The critical criterion proposed by Lau et al. (2014) for

uler–Lagrange simulation is adopted in the present solver, which

an be written as: 

 e = 

ρl δu 

2 ( d ) d 

σ
> W e crit = 12 · ζ ; ζ = 

(
1 + 2 E p 

b 

3 E 2 / 3 p 
b 

)−1 /p 

(11)

here p = 1.6075, E b = f(Eo d ) has been shown in Eq. (8) . This

odel is derived by the analysis of bubble deformation in turbu-

ence flow and has been proved to be accurate. 

Another key problem of bubble breakup is the daughter bub-

le size distribution. Binary breakup is assumed in the present

olver and the daughter bubble size is described as a U-shape

istribution. The U-shape distribution model has been proved to

ave a strong physical foundation, which stands for the mecha-

ism that equal size binary breakup consumes the most energy

 Nambiar et al., 1992 ). The probability density function is defined

s: 

f bv ( γ ) = 

�( 1 ) 

�( 0 . 5 ) �( 0 . 5 ) 
γ − 1 

2 ( 1 − γ ) 
− 1 

2 (12)



X. Zhang, J. Wang and D. Wan / International Journal of Multiphase Flow 133 (2020) 103460 5 

w  

0

3

 

p  

c  

a  

t  

b  

c  

n  

b  

d

t

w  

fi  

1

 

c  

S  

t

4

 

m  

S  

t  

p

4

 

f

(

(  

 

i  

c  

i  

r  

t  

k

�

�

�

w  

g

 

o  

E  

E  

c  

o

Fig. 2. Illustration of the two kinds of transformation process from Lagrange bub- 

bles to VOF interface. (a) The Lagrange bubbles contact with an existing VOF inter- 

face. (b) The bubbles coalesce and grow so large that they are no longer suitable 

for tracking in the Lagrange framework. 
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here � is the gamma function and γ is a random value between

 and 1. 

.4. Micro-bubble coalescence 

Film drainage model ( Prince and Blanch, 1990 ) is adopted in the

resent solver, which is one of the most widely accepted bubble

oalescence models in the previous studies. The dominate mech-

nism of the model is that there is a thin liquid film between

wo bubbles when they contact to each other. During the bub-

le contact process, the liquid film is drained and thinned. Coales-

ence happens when the liquid film is drained to a critical thick-

ess. Therefore, the critical criterion is that the contact time of two

ubbles must be longer than the liquid film drainage time. The

rainage time is defined as: 

 drainage = 

√ 

d 3 eq ρl 

128 σ
ln ( 

θ0 

θ f 

) (13) 

here θ0 and θ f is the initial liquid film thickness and final liquid

lm thickness, respectively. θ0 is set to be 10 −4 and θ f is set to be

0 −8 for air-water system in the present study. 

Benefiting from the fact that the contact between bubbles

an be calculated directly in the present solver as described in

ection 3.2 , no additional model is required to calculate the con-

act time. 

. Transformation algorithm and computational procedure 

The detailed numerical methods adopted in the present

ethod for single-scale two phase flow have been introduced in

ections 2 and 3 . In this section, the transformation algorithms be-

ween the two scale models are explained and the numerical im-

lementation for the main computational procedure is introduced. 

.1. Transformation from Lagrange bubbles to VOF interface 

There are two scenarios that Lagrange bubbles should be trans-

ormed to VOF interface: 

a) the Lagrange bubbles contact with an existing VOF interface. 

b) the bubbles coalesce and grow so large that they are no longer

suitable for tracking in the Lagrange framework. 

Illustration of the transformation process for these two scenar-

os can be seen in Fig. 2 . For the first scenario (a), a transformation

riterion based on the distance between Lagrange bubble and ex-

sting VOF interface is usually adopted. Although this algorithm is

elatively simple and straightforward, the definition of critical dis-

ance �cri 
BI 

are different in previous studies. There are mainly three

inds of critical values, which are: 

BI < �cri 
BI = 

d 

2 

(14) 

BI < �cri 
BI = 

d 

2 

+ l g (15) 

BI < �cri 
BI = 

d 

2 

+ 2 l g (16) 

here d is the Lagrange bubble diameter, l g is the local interface

rid thickness. 

Eq. (14) is the most commonly used criterion in the previ-

us studies because of its explicit physical meaning. Eq. (15) and

q. (16) add the influence of interface grid thickness based on

q. (14) . However, a comparison of the effects of these different

ritical criteria is still lacking, which becomes an important work

f the present study. 
For the second scenario (b), the critical Lagrange bubble size is

imited by the bubble diameter and grid size, which can be written

s: 

 > max( d thr , C thr l g ) (17) 

here d thr is a threshold bubble diameter and C thr is a user de-

ned threshold grid size factor. The critical diameter of Lagrange

ubbles in the transformation algorithm is considered from two as-

ects. First, in physics, the d thr represents the critical diameter that

ubbles can basically maintain a sphere shape in specific physical

roblem. In other word, d thr is the upper limit of bubble diam-

ter suitable for Lagrange simulation. Therefore, the value of d thr 

s determined by specific physical problems. In a specific physi-

al condition, bubbles with the diameters larger than d thr deform

nder the influence of the flow, which does not conform to the

pherical hypothesis in the Lagrange framework. Therefore, the La-

range bubble is transformed to VOF interface. Second, in numeri-

al modeling, because of the relationship between bubble size and

rid size, another critical criterion is designed, which is C thr multi-

lied by l g . C thr is a threshold grid size factor, which represents the

aximum number of grids a Lagrange bubble can contain. When

ransformation takes place from Lagrange bubble to VOF interface,

he bubble should occupy enough grids so that the bubble can be

xpressed, but not too many grids because of numerical instability

n two-way coupling. Therefore, the value of C thr is recommended

etween 1.0 and 8.0. 

The above describes the critical criteria in two different scenar-

os. With the help of Fig. 2 , the implementation of the transforma-

ion algorithm is introduced next. The dotted line represents La-

range bubbles, and the solid line represents VOF interface. Each

ubble is traversed at each computation time step to evaluate

hether the critical condition of transformation is met. If so, the

rids occupied by the bubble will be marked. The volume fraction

eld will be transformed first. Volume fraction values αV of the

rids contained by the Lagrange bubble are set to be zero. While

he αV value of the grids at the edge of the Lagrange bubble will

e determined by the ratio of the overlap volume by the grid vol-

me. The main goal of volume fraction field transformation is to

nsure the conservation of mass. At the same time, the computa-

ional grids containing the Lagrange bubble are assigned a velocity
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field for momentum conservation. For scenario (a), the velocity U

in grids are equal to the original velocity of the Lagrange bubble.

For scenario (b), the velocity is obtained according to the two small

bubbles before coalescence as Eq. (18) shows. After transformation,

the original Lagrange bubble will be removed immediately within

a time step to achieve a smooth simulation. 

 = 

(
d 3 a v a + d 3 

b 
v b 

)(
d 3 a + d 3 

b 

) (18)

4.2. Transformation from VOF interface to Lagrange bubbles 

The transformation of micro-scale bubbles from VOF interface

to Lagrange tracking can significantly improve the simulation ac-

curacy. At present, most of the transformation algorithms in liter-

atures consist of two steps ( Herrmann, 2010 ; Patkar et al., 2013 ;

Zuzio et al., 2018 ). First, the VOF bubbles in the computational do-

main are identified and tagged to calculate the volume and cen-

troid of each bubble. Second, evaluating the size criterion for each

VOF bubble to complete the transformation. This method is called

identify-based algorithm in this paper. A new curvature-based al-

gorithm is proposed in this paper to provide a lower computational

cost and more efficient way for multi-scale bubbly flow simulation.

The two algorithms developed in the present solver are introduced

as follows. 

4.2.1. Identify-based algorithm 

The first step of the identify-based algorithm is to detect the

VOF bubbles to be transformed. A flood-fill algorithm is adopted

in the present solver to identify the volume and centroid of

each VOF bubble. Flood-fill is a classical algorithm in image pro-

cessing and has been widely used in raster graphic editors to

color connected areas. Recently, the algorithm was adopted by

Wang et al. (2016) and Deike et al. (2016) to identify bubbles in

breaking waves. The algorithm is implemented in a stack-based

(recursive) fashion and the detailed procedure can be seen in

Fig. 3 . 

First, each cell in the computational domain is looped over and

evaluated whether the volume fraction αV is smaller than 0.5. If

the criterion is true, the main loop is paused and the cell is tagged

with a unique number n . Then, loop over the neighbor cells of

the initial cell and seek the cells located in the same bubble with

the initial cell. A recursive idea is taken to advance the search

for neighbor grids until all the cells in one bubble have been

tagged with the same number as the initial cell, which is shown

in Fig. 3 (c). After the process above, this one bubble is identified

completely. The main loop continues to identify the next bubble

n + 1 . After the identification, three important information, vol-

ume, centroid and the contained grid number, are stored for each

VOF bubble b . The volume and centroid can be calculated by: 

 b = 

∑ 

i ∈ N b 
V 

i 
cell 

(
1 − αi 

v 
)

(19)

X b = 

1 

V b 

∑ 

i ∈ N b 
V 

i 
cell 

(
1 − αi 

v 
)
X 

i 
cell (20)

where V cell and X cell is the volume and centroid of the grid-cell,

respectively. It should be noted that there is some error in the cur-

rent bubble identify algorithm, which comes from the grids par-

tially occupied by the VOF interface on the bubble surface. 

The transformation criterion can be defined directly based on

the geometric information of VOF bubbles. N b is defined as the to-

tal number of cell contained in a bubble. Small bubbles with N b <

N cri can be transformed to Lagrange tracking. The critical number

N cri is determined by specific computational requirements. A larger

number of N results in that larger deformable VOF bubbles are
cri 
ransformed to spherical Lagrange bubbles, reducing the accuracy

f simulation and producing numerical instability in the Euler–

agrange two-way coupling. Zuzio et al. (2018) used N cri = 8 3 in

heir study. 

If a VOF bubble satisfies the critical criterion and will be trans-

ormed into a Lagrange bubble, the volume fraction field αV of

he grids occupied by the VOF bubble will be set to 1 firstly. Vol-

me and location of the new Lagrange bubble are determined by

qs. (19) and (20) . At the same time, velocity of the new Lagrange

ubble is obtained by averaging the velocity field of the VOF bub-

le as Eq. (21) shows. 

 b = 

1 

V b 

∑ 

i ∈ N b 
V 

i 
cell 

(
1 − αi 

v 
)
U 

i 
cell (21)

.2.2. Curvature-based algorithm 

As mentioned above, the identify-based transformation algo-

ithm needs to identify the VOF bubbles in the flow field at each

ime step, which involves a large number of loops, resulting in a

ignificant increase of computational costs. At the same time, it

ill also consume a large amount of computer memory if there

re large bubbles containing a large number of grids. Therefore, the

uthors proposed a curvature-based algorithm to provide a high-

fficiency method for the transformation from VOF interface to La-

range bubbles. 

If a continuous air-water interface is about to break up into

mall bubbles, the location where the interface is broken is bound

o form a bulge, leading to the difference of curvature at different

ocations as Fig. 4 shows. The curvature of the interface is larger

or the bulge and the small bubbles generated by breaking. There-

ore the curvature can be used as a criterion for the transforma-

ion from VOF interface to Lagrange bubbles. However, it is diffi-

ult to evaluate the range of curvature. Thus, the curvature radius

 c , which is equal to the radius of inscribed sphere, is adopted as

he geometrical criterion of transformation. Besides, there is a mo-

entum criterion that the velocity of the bulge must be towards

he outside of the VOF interface. In conclusion, the critical criterion

n the curvature-based algorithm can be written as: 

( 0 < αv < 1 ) &&( R c < R 

cri 
c )&&( U n · ˆ n > 0) (22)

here R 

cri 
c is a critical curvature radius value determined by de-

ired transformation scale in specific simulations. U n is the veloc-

ty of the interface and ˆ n is the unit normal vector of the interface.

or the implementation of the algorithm, it only takes one loop of

rid and the computational cost will not increase significantly. 

After the transformation is implemented, all the Lagrange bub-

les are in sub-grid scale firstly. Volume, location and velocity are

etermined by the void fraction, center coordinate and velocity of

he grids on the broken VOF interface, respectively. It should be

oted that this breakup and transformation are reasonable in a

iolent turbulent flow, but in more moderate flows it may imply

xcessive breakup because the bubbles are too small. By adopting

he Lagrange bubble coalescence algorithm as Section 3.4 shows,

mall bubbles in the moderate flow will coalesce within several

ime steps, which improve the simulation effect. In contrast with

he Identify-based algorithm, the conservation error caused by the

dentify can also be avoided, which reduces the air mass loss in

he flow field. 

Another problem for this algorithm is the calculation of cur-

ature. The calculation of interface normal vector and curvature

eeds to take the derivative of volume fraction αV in the VOF

ethod. It is well known that the curvature calculation error in

he VOF method is large because αV is a discontinuous function. A

imple coupled Level-set Volume of Fluid (S-CLSVOF) method pro-

osed by Albadawi et al. (2013) is adopted in the present solver

o overcome the problem of curvature calculation. A Level-set dis-

ance function field φ is introduced and the interface is defined
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Fig. 3. Illustration of the flood-fill algorithm used for the identification of VOF bubbles. (a) A cell with αV < 0.5 (yellow) is tagged as “0 ′′ , seeking is performed in its 

neighbor cells (red). (b) Cells in the same bubble with the initial cell are tagged as “0 ′′ and then keep on seeking. (c) The bubble “0 ′′ is identified completely. (d) The next 

bubble “1 ′′ begins to be identified. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Illustration of the difference of curvature when interface breaking. 
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y the isosurface φ = 0 . The distance function field is obtained by

olving the re-initialization equation ( Sussman et al., 1998 ): 
 

∂φ

∂τ
= S ( φ0 ) ( 1 − ∇φ) 

φ( x, 0 ) = φ0 ( x ) = ( 2 αv − 1 ) · �
(23) 

here τ is the artificial time step, S( ϕ0 ) is a sign function, � is

 small value defined as 0.75 �x where �x is grid size. The initial

alue of Level-set function is constructed by the volume fraction

n VOF method. The solution converges to a signed distance func-

ion achieving | φ| = 1 after several iterations. The interface normal

ector and curvature are then calculated by the φ field as: 
ˆ 
 = 

∇φ

| ∇φ| (24) 

 ( φ) = ∇ · ˆ n (25) 

Because of the characteristic of continuity, the Level-set func-

ion can help calculate the interface curvature and surface tension

ccurately, which provides a favorable conditions for the imple-

entation of the curvature-based transformation algorithm. 

.3. Computational procedure 

In summary, by the combination of the numerical models and

lgorithms introduced above, the main computational procedure

an be seen in Table 1 Before the solving loop begins, initial data

ontaining Lagrange bubble positions and VOF interface and the

orresponding volumetric field are calculated. During each time

tep, behaviors of Lagrange bubbles are evaluated first including

reakup, collision and coalescence according to Eqs. (9)–(13) . Then

he forces acting on the Lagrange bubbles are calculated based on

he grid data and the motion is solved based on Eqs. (6)–(8) . Multi-

cale transformations are implemented next. Lagrange bubbles that

ome into contact with the air-water interface or that are larger

han the critical size will be transformed to the VOF interface as

qs. (14)–(18) . After that, small scale bubbles will be transformed

rom VOF interface to Lagrange tracking by specific algorithms as

qs. (19)–(22) . Finally is a classic PIMPLE loop to solve the VOF



8 X. Zhang, J. Wang and D. Wan / International Journal of Multiphase Flow 133 (2020) 103460 

Table 1 

Computational procedure of the multi-scale two phase solver for bubbly flows. 

Simulation Procedure 

1 Initialize the Lagrange bubble distribution, calculate the corresponding void fraction αL in grids 

2 Initialize the VOF field, calculate the corresponding void fraction αV in grids 

3 while time < endTime do 

4 Evaluate Lagrange bubble breakup 

5 Evaluate Lagrange bubble collision and coalescence 

6 Calculate hydrodynamic forces and collision force on Lagrange bubbles, update the bubble locations 

7 Evaluate transformation from Lagrange bubbles to VOF interface 

8 Evaluate transformation from VOF interface to Lagrange bubbles 

9 PIMPLE loop 

10 Solve VOF phase transport equation 

11 Solve velocity and pressure equations 

12 time += �t 

13 end while 

Fig. 5. Numerical conditions for the case that bubble rise up and collide with free- 

surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Multi-scale simulation of bubble rising up and merging with free-surface by 

three different transformation criteria. (a). Lagrange bubble rise up. (b). Transforma- 

tion moment from Lagrange bubble to VOF interface. (c). Jet flow at the center of 

the free-surface after the bubble merges into the interface. (d). Circular ripple on 

the free surface at the end of simulations. 
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phase transport equation and N-S equations. The solver is devel-

oped based on the open source platform OpenFOAM . 

5. Results and discussion 

This paper focuses on the simulation effect of the multi-scale

transformation. In this section, the ability of the present solver

will be presented by typical academic cases. At the same time,

the comparison of different critical criteria, algorithms will be dis-

cussed in detail in the simulations. 

5.1. Bubble rise up and merge with free-surface 

In this section, the solver is validated by simulating the interac-

tion between a rising bubble and free-surface. The test case is de-

rived from the first scenario of the transformation from Lagrange

bubbles to VOF interface as Section 4.1 introduced. The numeri-

cal conditions can be seen in Fig. 5 . The computational domain

is a box with 10 mm in length, 10 mm in width and 20 mm in

height. An air-water interface is initialized at height 15 mm. A

three-dimensional bubble initially at rest is immersed into the wa-

ter and is located 10 m away from the free-surface. Diameter of the

initial bubble is 1 mm and the physical properties are ρb = 1kg / m 

3 

and νb = 1 . 48 × 1 0 −5 m 

2 / s . For the water phase, the physical prop-

erties are ρw 

= 10 0 0kg / m 

3 and νw 

= 1 × 1 0 −6 m 

2 / s . The computa-

tional domain is discretized using N x ×N y ×N z = 80 × 160 × 80 grid
oints in three directions. The grid distribution corresponds to 8

rids in a bubble diameter, which is not a fine grid arrangement

or a VOF bubble rising up simulation, but it is basically conforms

o the resolution of micro-bubbles in the simulation of practical

omplex problems. The main purpose of this simulation is to ver-

fy the performance of different transformation criteria and show

he advantages of the multi-scale method in the case with insuffi-

ient grid resolution. 

As introduced in the Section 4.1 , there are three kinds of criti-

al criteria that have been used in the previous studies. However,

here is a lack of research on the effect of these criteria on the

ulti-scale transformation process. Therefore, in order to perform

his work, three multi-scale simulations are carried out as: 

• [MS_C ri 1]: Simulated by multi-scale solver and the critical cri-

terion is �BI < �cri 
BI 

= d / 2 as Eq. (14) . 
• [MS_C ri 2]: Simulated by multi-scale solver and the critical cri-

terion is �BI < �cri 
BI 

= d / 2 + l g as Eq. (15) . 
• [MS_C ri 3]: Simulated by multi-scale solver and the critical cri-

terion is �BI < �cri 
BI 

= d / 2 + 2 l g as Eq. (16) . 

In order to investigate the simulation effect of the multi-scale

olver in contrast with the traditional single-scale solver, a VOF

imulation is carried out under the same conditions with the above

ulti-scale simulations. The results are called SS_VOF in the fol-

owing figures. 

First, three multi-scale simulation results in Fig. 6 are discussed.

uring the rising process shown in Fig. 6 (a), the bubble is mod-

led as a spherical Lagrange particle. The hydrodynamic forces act-

ng on the bubble is quickly balanced and the bubble maintains a

teady rising velocity. Fig. 6 (b) shows the transformation moment



X. Zhang, J. Wang and D. Wan / International Journal of Multiphase Flow 133 (2020) 103460 9 

Fig. 7. Comparison of the diachronic evolution of the center height of the free- 

surface between three multi-scale transformation simulations and one single-scale 

simulation. 
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Fig. 8. Comparison of final velocity of bubbles rising up in quiescent water. 
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n the simulations. The original Lagrange bubble can be success-

ully transformed into a VOF bubble with interface capturing. Ob-

ious differences can be seen from the results of three different

ases. Because of the adoption of different criteria, the transforma-

ion is successively advanced in these cases. The transformation in

ase MS_Cri1 takes place at the latest, at which time the Lagrange

ubble has overlapped with the free-surface, leading to a certain

mount of mass loss. On the other hand, the transformation in case

S_Cri1 takes place too early. Due to the less grid resolution, the

arly transformation will first bring some oscillation on the bub-

le surface, which will affect the bubble movement. In contrast,

he transformation moment of case MS_Cri2 is relatively reason-

ble, at which time the Lagrange bubble is just in contact with

he free surface. Fig. 6 (c) presents the jet flow at the center of the

ree-surface after the bubble merges into the interface. Separated

roplets can be seen clearly in the case MS_Cri1 and MS_Cri2.

owever, the phenomenon is not captured in the case MS_Cri3. Fi-

ally, the jet flow falls back and forms a circular ripple on the free

urface as Fig. 6 (d) shows. In order to quantitatively compare the

nfluence of three different critical criteria on the evolution of free-

urface after transformation, the diachronic evolution of the center

eight of the free-surface is plotted as shown in Fig. 7 . 

Fig. 7 presents the diachronic evolution of the center height of

he free-surface. The x -coordinate is the dimensionless time which

s defined as t ∗= t U b / d , while the y -coordinate is the dimension-

ess free-surface height which is defined as h 

∗= h / d . The peak of

he curve represents the height of the central jet flow. The height

esults calculated from case MS_Cri1 and MS_Cri2 are close and

ignificantly higher than that calculated from case MS_Cri3. Com-

ined with Fig. 6 (c), it can be seen that the increase of jet flow

eight is reflected by the generation of separated droplets. In the

imulation of flow phenomena after multi-scale transformation,

ase MS_Cri1 and MS_Cri2 are better than MS_Cri3. At the same

ime, although the simulation effect of the first two cases is not

ery different, case MS_Cri2 has a slightly better conservation of

ass due to its early transformation. Therefore it can be concluded

hat the corresponding critical criterion �BI < �cri 
BI 

= d / 2+ l g is bet-

er for using in the transformation scenario that Lagrange bubbles

ontact with an existing interface. 

Then, the comparison between multi-scale simulation results

f MS_Cri2 and single-scale simulation results of SS_VOF is dis-
ussed. In Fig. 6 , it can be seen that most of the evolution pro-

esses fit well. However, the droplet splash phenomenon captured

n the multi-scale simulation is not reproduced by the single-scale

imulation. Quantitatively, the comparison of diachronic evolution

f the center height of the free-surface between the MS cases and

S_VOF case is also plotted in Fig. 7 . Comparing the results of case

S_VOF with case MS_Cri2, the merge time and the valley value

f the curve of the two simulation results are in good agreement.

owever, significant difference can be seen in the central jet flow

eight. Result of the case SS_VOF is much smaller than that of the

ulti-scale case. It has been proposed by previous related studies

hat the jet flow height depends sensitively on the bubble velocity.

herefore, the final velocities of the rising bubbles in two kinds of

imulations are plotted in Fig. 8 for further analysis. 

Fig. 8 presents the final velocity of rising bubbles. Since the

ubble rising up in quiescent water is a classic problem, two exper-

mental measurement data ( Moore, 1965 ; Duineveld, 1995 ) are also

lotted to validate the numerical results. It can be found that the

ising velocity of case MS_Cri2 agrees better with the experimental

esults, while the rising velocity of case SS_VOF is obviously lower.

s introduced above, the grid distribution used in the simulation

orresponds to 8 grids in a bubble diameter. Insufficient grid reso-

ution causes a certain degree of errors in the SS_VOF simulation of

ising bubble. The under-predicted rising velocity is the main rea-

on why the height of central jet flow is lower in the SS_VOF case

s shown in Fig. 7 . In contrast, the motion of bubbles tracked un-

er the Lagrange framework is obtained by a series of force mod-

ls, so it can still predict the velocity accurately with less grid res-

lution. The accurate predicted rising velocity makes it better to

apture the flow phenomenon after the multi-scale transformation

s Fig. 6 shows. It can be seen clearly how the multi-scale solver

s better than the single-scale pure VOF method as the bubble be-

omes less resolved. 

.2. Bubble coalesces and exceed a critical scale 

In this section, the simulation effect of transformation from La-

range bubbles exceeding critical scale to VOF interface is verified.

he test case is derived from the second scenario of the transfor-

ation from Lagrange bubbles to VOF interface as Section 4.1 in-

roduced. The numerical conditions can be seen in Fig. 9 . A rect-

ngular vertical channel with a side length of 9 mm is used as the
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Fig. 9. Numerical conditions for the case of bubble coalescence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Physical parameters and non-dimensional numbers defining the test case. 

ρ l ρb μl μb g σ Re Eo ρ l / ρb μl / μb 

1000 1 10 0.1 0.98 1.96 35 125 1000 100 
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computational domain. The height of the domain is 36 mm, and

two water flow inlet boundaries with the velocity of 0.035 m/s are

arranged symmetrically on the left and right sides. The computa-

tional domain is discretized using N x ×N y ×N z = 90 × 360 × 90 grid

points in three directions. 12 bubbles with the diameter of 0.8 mm

are randomly initialized near the height of 4.5 mm. The flows on

both sides are used to push the rising bubbles to contact with each

other. Density and viscosity of the fluids are set to be the same

with those in the Section 5.1 . The initial conditions are selected af-

ter several tests, aiming at creating a simulation effect that a part

of the micro-bubbles coalesce and form large bubbles over a crit-

ical scale. The critical bubble diameter is set to be 1.5 mm in the

present simulation, which means that the Lagrange bubbles larger

than 1.5 mm will be transformed to VOF interface. 

Evolution of bubble behaviors in the vertical channel is pre-

sented in Fig. 10 . Initially, some of the Lagrange bubbles are in con-

tact with each other. By using the coalescence model introduced in
Fig. 10. Multi-scale simulation of the bubble coalescence and exceed a critical scale. (

coalesce to middle-sized bubbles. (c). Two larger bubbles contact driven by the lateral 

transformed into VOF interface capture. (e). The shape of large VOF bubble becomes ellip
ection 3.4 , the micro-bubbles soon coalesce and become medium-

ized bubbles. Driven by the water flow on both sides, the bubbles

ove toward the center as the rising process. Two larger Lagrange

ubbles contact and then form a bubble with a diameter of more

han 1.5 mm. The bubble in the present flow field should be de-

ormed, which is not in line with the spherical bubble hypothe-

is of the Lagrange bubble tracking method. Therefore, the bub-

le after coalescence is directly transformed into the VOF inter-

ace within one time step as the Fig. 10 (c) and 10 (d) show. After

he multi-scale transformation, the shape of VOF bubbles gradu-

lly changes from sphere to ellipsod. The rising velocity of the el-

ipsoidal bubble is slightly lower than that of the original spherical

ubble, which conforms to the actual physical phenomenon. 

.3. Large bubble rising and breakup 

In this section, rising and breakup process of a large bubble

re simulated to validate the transformation algorithm from VOF

nterface capturing to Lagrange tracking of the multi-scale solver.

he test case is performed against Hysing et al.’s (2009) quanti-

ative benchmark computations of two-dimensional bubble rising.

wo benchmark cases were provided in their paper, and the more

hallenging one with larger density ratio and complex breakup is

dopted for the simulation of this section. The numerical condi-

ions can be seen in Fig. 11 . A bubble with the diameter of 0.5 cen-

ered at the position (0.5, 0.5) in a 1 × 2 rectangular computational

omain. The computational domain is discretized using N x × N y =
0 × 160 grid points. No-slip boundary condition is adopted for

he upper and lower wall, while free-slip boundary condition is

sed for the vertical walls. Table 2 presents the physical param-

ters and non-dimensional numbers defining the test case, where

he Reynolds number is defined as Re = ρl 

√ 

gd d / μl and the Eötvös

umber is defined as Eo = ρl g d 

2 /σ . In the rising process, the orig-

nal bubbles will break up and then shed out micro-bubbles and
a). Initial distribution of the Lagrange bubbles. (b). Some contacted micro-bubble 

water flow. (d). Lagrange bubble exceeding the critical scale after coalescence is 

soidal. (f). Final flow state. 
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Fig. 11. Numerical conditions of the case that two-dimensional large bubble rising 

and breakup. 

b  

i

 

s  

m  

r  

t  

i  

g

 

 

 

 

g  

l  

b  

o  

t  

a

d  

t  

b  

d  

b  

s

 

t  

c  

t  

b  

t  

t  

m  

b  

a  

d  

H  

M  

f  

a  

M  

S

 

M  

c  

t  

t  

t  

t  

g  

a  

t  

t  

c  

t  

i

 

u  

t  

f  

o  

b  
anded flow structure, which present challenges to the traditional

nterface capture methods. 

As introduced in the Section 4.2 , most of the previous multi-

cale solvers adopted the identify-based algorithm for the transfor-

ation form VOF interface to Lagrange bubbles [17, 25]. This algo-

ithm is realized by a flood-fill idea in the present solver. In addi-

ion, a new curvature-based transformation algorithm is proposed

n this paper. In order to compare the performance of different al-

orithms, three simulations are carried out as: 

• [MS_IBA]: Simulated by multi-scale (MS) solver combined with

the identify-based algorithm (IBA). 
• [MS_CBA]: Simulated by multi-scale (MS) solver combined with

the curvature-based algorithm (CBA). 
• [SS_VOF]: Simulated by single-scale solver and the interface is

captured by VOF method. 

Fig. 12 shows the results of rising bubble behavior up to t = 4 s,

iven by the case SS_VOF. The bubble is presented by the contour

ine of αV = 0 . 5 . During the rising process, the bottom of the bub-

le appears to sag gradually. Thin filaments come out and break
Fig. 12. Simulation results of rising bubble behavior given by the c
ff from the edge of the bubble. The time of breakup predicted in

he simulation is about t = 3 s as Fig. 12 (c) shows. Finally, there

re only the original main bubble and two middle-sized break off

aughter bubbles in the computational domain. It should be noted

hat the VOF result is obtained using a relatively coarse grid distri-

ution. Micro-scale bubbles are not captured due to the numerical

iffusion. In fact, there are some small satellite bubbles trailing the

ulk of the main bubble, which has been partly captured by some

imulations with high grid resolution in the reference [40]. 

Fig. 13 shows the bubble behaviors of the case MS_IBA from

 = 3 s to t = 4 s. Results before t = 3 s are not presented be-

ause no transformation takes place at that time. The critical cri-

erion is set to be N b < N cri = 10 , which means that VOF bub-

les contained less than 10 grids will be transformed to Lagrange

racking. It can be seen from Fig. 13 (b) that in addition to the

wo middle-sized bubbles breaking off first, there are subsequent

icro-scale bubbles that further break off from the original main

ubble. These micro-scale two phase flow structures are gradu-

lly blurred in the SS_VOF simulation because of the numerical

iffusion of traditional VOF methods under less grid resolution.

owever, the micro-bubbles are successfully captured in the case

S_IBA as shown in Fig. 13 (c). By using the multi-scale trans-

ormation algorithm, the bubbles that are about to diffuse away

re transformed to Lagrange particles. Finally, the simulation of

S_IBA case capture two more spherical bubbles than that of the

S_VOF case. 

The results of bubble behaviors calculated from the case

S_CBA are shown in Fig. 14 . Critical curvature radius in the

urvature-based transformation algorithm is set to be d/50. Dis-

inct difference can be seen in the wake of the main bubble. As

he simulation progresses, the micro-scale satellite bubbles con-

inuously break off from the edge of the main bubble and are

ransformed to Lagrange particles by the multi-scale solver. The La-

range bubbles breaking off vary in size. In addition, coalescence

nd breakup can be further accomplished by specific algorithms in

he solver. The micro-scale satellite bubbles arrange in long thin

railing filament and trail the bulk of the main bubble. The suc-

essful capture of these phenomena shows the excellent simula-

ion effect of curvature-based transformation algorithm proposed

n this paper for multi-scale two-phase bubbly flow problems. 

The diffusion of phase interface is a key problem in the sim-

lation of multi-scale two-phase flow problems using the tradi-

ional algebraic VOF method. If a constant isosurface of volume

raction is used to represent the bubbles in the flow field, the size

f the bubbles will gradually decrease, and the micro-scale bub-

les will gradually disappear. This phenomenon is more obvious
ase SS_VOF. (a). t = 1 s. (b). t = 2 s. (c). t = 3 s. (d). t = 4 s. 
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Fig. 13. Simulation results of rising bubble behavior given by the case MS_IBA. (a). t = 3 s. (b). t = 3.25 s. (c). t = 3.58 s. (d). t = 4 s. 

Fig. 14. Simulation results of rising bubble behavior given by the case MS_CBA. (a). t = 3 s. (b). t = 3.25 s. (c). t = 3.5 s. (d). t = 4 s. 

Fig. 15. Total volume of bubbles in the flow field varies over time. 

 

 

 

 

 

 

c  

t  

i  

c  

t  

i  

a  

t  

p  

c  

a

 

c  

a  

L  

o  

c  

c  

fi  

C  

p  

t  

s  

t  

o  

m  

i  

i  

s  

o  

t  
at less grid resolution. Fig. 15 shows the total volume of bubbles

in the flow field varying over time in the simulation. V T is calcu-

lated by adding the volume contained in the isosurface αV = 0 . 5

and the volume of Lagrange bubbles in the flow field. V T0 is the

initial volume of the main bubble. It can be seen that the multi-

scale simulation method using the two transformation algorithms
an compensate the bubble volume loss in the flow field to a cer-

ain degree. After the break-off of small bubbles, the volume loss

s more dramatic in the case SS_VOF because the small bubbles

annot be captured at less grid resolution. However, the volume of

he breaking off bubbles are collected by the multi-scale solver us-

ng Lagrange tracking. Therefore the volume losses of case MS_IBA

nd MS_CBA are smaller than that of the case SS_VOF. In contrast,

he curvature-based transformation algorithm proposed in this pa-

er performs better for keeping the volume at the final time, be-

ause more bubbles are captured in the wake of the main bubble

s Fig. 14 shows. 

Computational efficiency is an important advantage of

urvature-based algorithm in contrast with the identify-based

lgorithm for the transformation from VOF interface capturing to

agrange tracking. Fig. 16 summarizes the final simulation effects

f the three test cases and the CPU time required to obtain the

orresponding results. At the same time, a much finer SS_VOF

ase with N x ×N y = 320 × 640 grid points is performed and the

nal simulation effect is also plotted. T SS _ VOF _ 80 ×160 
CPU 

is the total

PU time cost in the case SS_VOF with N x ×N y = 80 × 160 grid

oints, and it is used as a benchmark to evaluate the computa-

ional efficiency of the multi-scale solver. The cases are performed

erially using an Intel Core i7–7700 CPU. It costs 148 s of CPU

ime to complete the computation of case SS_VOF_80 × 160. It is

bvious in Fig. 16 that the computational cost of case MS_IBA is

uch larger than that of case SS_VOF. The direct reason is that

t takes a lot of computational time to identify the VOF bubbles

n the flow field at each time step. In the identification process,

eeking and evaluating the neighbor grids are bound to carry

ut a lot of loops, whatever the algorithm is recursive or not. If

here are bubbles in the flow field that contain a large number
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Fig. 16. Summary of the final simulation effects of the four test cases and the CPU time required to obtain the corresponding results. (a). Case SS_VOF with 80 × 160 grid 

points. (b). Case MS_IBA. (c). Case MS_CBA. (d). Case SS_VOF with 320 × 640 grid points. (For interpretation of the references to colour in this figure, the reader is referred 

to the web version of this article.) 
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f grids, the identification process will be significantly slowed

own because the number of loops nested is too high. In the

ecent studies of Zuzio et al. [25], they also pointed out that the

dentification process is time-consuming. Although the simulation

ffect is indeed improved slightly by comparing Fig. 16 (b) with

ig. 16 (a), it is not a good choice to add so much computational

ost. 

It can be seen from Fig. 16 (d) that many small bubbles in

he wake of the large bubble can also be captured using SS_VOF

ith further grid refinement. As the grid resolution increases, the

ime step decreases accordingly, resulting in a more than hundred-

old increase in computing time. The advantage of the curvature-

ased transformation algorithm can be seen in Fig. 16 (c). The cap-

ure accuracy of micro-scale bubbles is significantly improved com-

ared with pure VOF simulation with less grid resolution. The phe-

omenon of small bubbles can be well simulated while the CPU

ime only increases by 1%. The increased computational cost is

sed for the evaluation of motion, collision and coalescence of

agrange bubbles. The implement of curvature-based transforma-

ion algorithm does not involve redundant loop calculations, thus

here is little additional computing time. Both computational ac-

uracy and efficiency taken into consideration, the algorithm is

ore promising to be extended to solve three-dimensional com-

lex multi-scale two-phase flow problems. 

. Conclusions 

In this paper, an improved multi-scale two-phase solver is de-

eloped to simulate bubbly flow problems, in which the macro-

cale bubbles are captured by VOF method and micro-scale bub-

les are modeled by Lagrange tracking. The dynamic behavior of

ulti-scale bubbles in incompressible flows is considered compre-

ensively in the solver, including motion, collision, coalescence and

reakup. This paper focuses on the comparison between the simu-

ation effect of multi-scale method and that of pure VOF method,

s well as the discussion of multi-scale transformation process and

lgorithms. Following conclusions can be obtained: 

 

1) The new multi-scale two-phase model combines the advantage

of interface capture method and particle tracking method suc-

cessfully. The bubbles of different scales in the flow field can be

calculated simultaneously by different methods. And the trans-

formation between micro-scale Lagrange tracking and macro-

scale VOF capturing is smooth and physical reasonable. The

multi-scale two-phase model performs significantly better than

the pure VOF model in capturing micro-scale phenomenon un-

der less grid resolution. Especially for the sub-grid bubbles,

they directly disappear in the pure VOF simulation due to nu-

merical diffusion, but can be captured by Lagrange tracking

in the multi-scale two-phase model. Refining grids to capture

micro-scale flow structures is strictly limited by computational

costs. But Lagrange method can track arbitrarily small bubbles.

Therefore, the multi-scale two-phase model is more promising

for the simulation of actual complex two-phase flows. 

2) Comparison is carried out between three different critical crite-

ria for the transformation from Lagrange bubble tracking to VOF

interface capturing The criterion �BI < �cri 
BI 

= d / 2+ l g based on

the distance between Lagrange bubbles and existing VOF inter-

face is recommended according to the presented numerical re-

sults. The transformation process can be completed smoothly.

The dynamic evaluation of the air-water interface can be well

simulated with relatively good mass conservation. 

3) A new curvature-based algorithm is proposed for the transfor-

mation from VOF interface capturing to Lagrange bubble track-

ing. The simulation effect and computational time are com-

pared with the previous identify-based algorithm in detail. In

conclusion, the advantage of the identify-based algorithm is

that the transformation idea is straightforward, VOF bubbles

containing many grids can be directly transformed into a La-

grange bubble. However, the disadvantage of the identify-based

algorithm is that bubble identification needs to be performed

at each time step. A lot of loops are required to seek and eval-

uate the neighbor grids, which is very time-consuming. For

the curvature-based algorithm proposed in this paper, it shows

significantly better performance both in simulation precision

and computational efficiency. In the given test cases, micro-

bubble distribution and flow details are well captured with



14 X. Zhang, J. Wang and D. Wan / International Journal of Multiphase Flow 133 (2020) 103460 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J  

 

K  

 

K
L  

 

L  

 

 

L  

L  

L  

 

M  

M  

M  

 

 

 

M  

M  

 

N  

 

P  

 

 

P  

R  

 

 

 

T  

T  

 

T  

T  

 

 

W  

 

X  

 

 

Y  

 

Z  

Z  

 

computational time increasing by only 1%. The results indicate

that the new curvature-based algorithm is more promising to

be adopted in actual complex two-phase flow simulation. On

the other hand, the main shortcoming of the proposed algo-

rithm is that it is relatively difficult to determine an appropriate

control parameter before calculation. Over-breakup may occurs

for the VOF interface. Future works will further deal with this

problem. 
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